134 research outputs found

    Red and Reddened Quasars in the Sloan Digital Sky Survey

    Get PDF
    We investigate the continuum and emission line properties of 4576 SDSS quasars as a function of their optical/UV SEDs. The optical/UV color distribution of our sample is roughly Gaussian, but with a red tail; we distinguish between 1) intrinsically blue (optically flat) quasars, 2) intrinsically red (optically steep) quasars, and 3) the 273 (6%) of our quasars whose continua are inconsistent with a single power-law and appear redder due to SMC-like dust reddening rather than synchrotron emission. The color distribution suggests that the population of moderately dust reddened broad-line quasars is smaller than that of unobscured quasars, but we estimate that a further 10% of the luminous quasar population is missing from the SDSS sample because of dust extinction with E(B-V)<0.5. We also investigate the emission and absorption line properties of these quasars as a function of color with regard to Boroson & Green type eigenvectors. Intrinsically red (optically steep) quasars tend to have narrower Balmer lines and weaker CIV, CIII], HeII and 3000A bump emission as compared with bluer (optically flatter) quasars. The change in strength of the 3000A bump appears to be dominated by the Balmer continuum and not by FeII emission. The dust reddened quasars have even narrower Balmer lines and weaker 3000A bumps, in addition to having considerably larger equivalent widths of [OII] and [OIII] emission. The fraction of broad absorption line quasars (BALQSOs) increases from ~3.4% for the bluest quasars to perhaps as large as 20% for the dust reddened quasars, but the intrinsic color distribution is affected by dust reddening. (abridged)Comment: 37 pages, 10 figures (3 color), 2 tables, accepted by AJ. For a version with higher quality figures, see ftp://astro.princeton.edu/gtr/redqsos/RichardsGT_redqsos.revised3.preprint.p

    New Method to Calculate the Sign and Relative Strength of Magnetic Interactions in Low-Dimensional Systems on the Basis of Structural Data

    Full text link
    The connection of strength of magnetic interactions and type ordering the magnetic moments with crystal chemical characteristics in low-dimensional magnets is investigated. The new method to calculate the sign and relative strength of magnetic interactions in low-dimensional systems on the basis of the structural data is proposed. This method allows to estimate magnetic interactions not only inside low-dimensional fragments but also between them, and also to predict the possibility of the occurrence of magnetic phase transitions and anomalies of the magnetic interactions. Moreover, it can be used for search of low-dimensional magnets among the compounds whose crystal structures are known. The possibilities of the method are illustrated in an example of research of magnetic interactions in familiar low-dimensional magnets SrCu2(BO3)2, CaCuGe2O6, CaV4O9, Cu2Te2O5Cl2, Cu2Te2O5Br2, BaCu2Si2O7, BaCu2Ge2O7, BaCuSi2O6, LiCu2O2, and NaCu2O2.Comment: 18 pages, 8 figures, 2 tables, published versio

    Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity

    Get PDF
    Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria

    Drama and discounting in the relational dynamics of corporate social responsibility

    Get PDF
    Employing theoretical resources from Transactional Analysis (TA) and drawing from interviews with managers dealing with social or environmental issues in their role, we explain how CSR activity provides a context for dramas in which actors may ignore, or discount aspects of self, others, and the contexts of their work as they maintain and reproduce the roles of Rescuers, Persecutors and Victims. In doing so, we add to knowledge about CSR by providing an explanation for how the contradictions of CSR are avoided in practice even when actors may be aware of them. Specifically, we theorise how CSR work can produce dramatic stories where adversity is apparently overcome, whilst little is actually achieved at the social level. We also add to the range of psychoanalytic tools used to account for organisational behaviours, emphasising how TA can explain the relational dynamics of CSR

    Homoplasy corrected estimation of genetic similarity from AFLP bands, and the effect of the number of bands on the precision of estimation

    Get PDF
    AFLP is a DNA fingerprinting technique, resulting in binary band presence–absence patterns, called profiles, with known or unknown band positions. We model AFLP as a sampling procedure of fragments, with lengths sampled from a distribution. Bands represent fragments of specific lengths. We focus on estimation of pairwise genetic similarity, defined as average fraction of common fragments, by AFLP. Usual estimators are Dice (D) or Jaccard coefficients. D overestimates genetic similarity, since identical bands in profile pairs may correspond to different fragments (homoplasy). Another complicating factor is the occurrence of different fragments of equal length within a profile, appearing as a single band, which we call collision. The bias of D increases with larger numbers of bands, and lower genetic similarity. We propose two homoplasy- and collision-corrected estimators of genetic similarity. The first is a modification of D, replacing band counts by estimated fragment counts. The second is a maximum likelihood estimator, only applicable if band positions are available. Properties of the estimators are studied by simulation. Standard errors and confidence intervals for the first are obtained by bootstrapping, and for the second by likelihood theory. The estimators are nearly unbiased, and have for most practical cases smaller standard error than D. The likelihood-based estimator generally gives the highest precision. The relationship between fragment counts and precision is studied using simulation. The usual range of band counts (50–100) appears nearly optimal. The methodology is illustrated using data from a phylogenetic study on lettuce

    Current European Labyrinthula zosterae Are Not Virulent and Modulate Seagrass (Zostera marina) Defense Gene Expression

    Get PDF
    Pro- and eukaryotic microbes associated with multi-cellular organisms are receiving increasing attention as a driving factor in ecosystems. Endophytes in plants can change host performance by altering nutrient uptake, secondary metabolite production or defense mechanisms. Recent studies detected widespread prevalence of Labyrinthula zosterae in European Zostera marina meadows, a protist that allegedly caused a massive amphi-Atlantic seagrass die-off event in the 1930's, while showing only limited virulence today. As a limiting factor for pathogenicity, we investigated genotype×genotype interactions of host and pathogen from different regions (10–100 km-scale) through reciprocal infection. Although the endophyte rapidly infected Z. marina, we found little evidence that Z. marina was negatively impacted by L. zosterae. Instead Z. marina showed enhanced leaf growth and kept endophyte abundance low. Moreover, we found almost no interaction of protist×eelgrass-origin on different parameters of L. zosterae virulence/Z. marina performance, and also no increase in mortality after experimental infection. In a target gene approach, we identified a significant down-regulation in the expression of 6/11 genes from the defense cascade of Z. marina after real-time quantitative PCR, revealing strong immune modulation of the host's defense by a potential parasite for the first time in a marine plant. Nevertheless, one gene involved in phenol synthesis was strongly up-regulated, indicating that Z. marina plants were probably able to control the level of infection. There was no change in expression in a general stress indicator gene (HSP70). Mean L. zosterae abundances decreased below 10% after 16 days of experimental runtime. We conclude that under non-stress conditions L. zosterae infection in the study region is not associated with substantial virulence

    Quantitative PCR reveals strong spatial and temporal variation of the wasting disease pathogen, Labyrinthula zosterae in northern European eelgrass (Zostera marina) beds

    Get PDF
    Seagrass beds are the foundation species of functionally important coastal ecosystems worldwide. The world’s largest losses of the widespread seagrass Zostera marina (eelgrass) have been reported as a consequence of wasting disease, an infection with the endophytic protist Labyrinthula zosterae. During one of the most extended epidemics in the marine realm, ~90% of East and Western Atlantic eelgrass beds died-off between 1932 and 1934. Today, small outbreaks continue to be reported, but the current extent of L. zosterae in European meadows is completely unknown. In this study we quantify the abundance and prevalence of the wasting disease pathogen among 19 Z. marina populations in northern European coastal waters, using quantitative PCR (QPCR) with primers targeting a species specific portion of the internally transcribed spacer (ITS1) of L. zosterae. Spatially, we found marked variation among sites with abundances varying between 0 and 126 cells mg−1 Z. marina dry weight (mean: 5.7 L. zosterae cells mg−1 Z. marina dry weight ±1.9 SE) and prevalences ranged from 0–88.9%. Temporarily, abundances varied between 0 and 271 cells mg−1 Z. marina dry weight (mean: 8.5±2.6 SE), while prevalences ranged from zero in winter and early spring to 96% in summer. Field concentrations accessed via bulk DNA extraction and subsequent QPCR correlated well with prevalence data estimated via isolation and cultivation from live plant tissue. L. zosterae was not only detectable in black lesions, a sign of Labyrinthula-induced necrosis, but also occurred in green, apparently healthy tissue. We conclude that L. zosterae infection is common (84% infected populations) in (northern) European eelgrass populations with highest abundances during the summer months. In the light of global climate change and increasing rate of marine diseases our data provide a baseline for further studies on the causes of pathogenic outbreaks of L. zosterae
    corecore